How Will Urbanization Change the San Joaquin Valley?

Forecasts predict that the San Joaquin Valley’s population will grow from its current level of 3.3 million residents to 7.0 million over the next 40 years. What forms might that growth take? In *Urban Development Futures in the San Joaquin Valley*, Michael B. Teitz, Charles Dietzel, and William Fulton use a sophisticated computer model to sketch the scale, tempo, and location of that growth under several public policy scenarios. Their results, which include a series of color maps to illustrate the spread of urbanization, will help policymakers and the public to assess the implications of that growth and to consider a range of policy responses.

Envisioning the Valley’s Future

The authors consider four broad scenarios for urban growth in the San Joaquin Valley.

The *Accommodating Urban Development* scenario assumes that the underlying urbanization patterns of the last 60 years will continue for the next four decades. Under this scenario, urban areas grow faster than the population, and prime farmland diminishes considerably. By 2040, urbanized areas show major growth in the three northern counties, around Fresno, and around Bakersfield. U.S. 99 has almost continuous urban development, and there is considerable growth along Interstate 5.

The *Prime Farmland Conservation* scenario permits urbanization to continue following the historical pattern but prohibits urbanization of 3.2 million acres of prime farmland. It projects substantial urbanization and farmland loss, with urban densities little changed. Because of the location of prime farmland, development shifts to land in other categories. The regulation of development at this scale is unlikely, but the scenario reflects the widely felt concern for farmland preservation and illustrates its likely results.

The *High-Speed Rail* scenario reflects the results of a proposed high-speed rail system that would connect the Bay Area and Sacramento to Los Angeles via the San Joaquin Valley. Under this scenario, urbanization would intensify within a 20-mile radius of the stations identified for the proposed rail network and decrease the probability of urbanization outside that radius.

The *Automobile-Oriented Managed Growth* scenario assumes that parts of Highway 65, a north-south highway on the eastern side of the Valley, would be built; that several east-west routes would be improved; and that the probability of new development would be greater along these transportation corridors and Interstate 5. Thus, it projects a future in which highway transportation improvements help shape urban growth. Like the High-Speed Rail scenario, it envisages high levels of urbanization and farmland loss (although in somewhat different places) and falling urban population densities.

Exploring the Policy Implications

The authors note that all four scenarios are speculative and that none is likely to provide a precise representation of the Valley’s future development. However, they illustrate the different forms that growth might take, highlight the choices that the Valley will likely have to make to ensure a prosperous and livable future, and permit useful comparisons and conclusions.

One conclusion is that urban growth will be significant in the San Joaquin Valley. Three of the four scenarios forecast the urbanization of at least one million acres by 2040—in essence, a tripling of the urban land stock. Because most of that growth would occur along highways, the perception of urbanization may be even greater than its reality.

Second, the forecasts point to declining urban density in the San Joaquin Valley. This is not surprising given the nature of the Valley—a large plain of mostly private land with relatively low land prices. The urbanized parts projected by these scenarios consist of automobile-oriented, low-rise...
development with relatively low gross densities. This development pattern would have significant implications for traffic congestion, air quality, and other growth-related problems.

Third, most of the projections show at least a 15 percent decline in farmland. (Even the Prime Farmland Conservation scenario showed a decline of almost 9 percent.) Although this outcome would have implications for the management of natural resources, especially water, it would not necessarily entail an equivalent loss of agricultural income if farmers were to increase the intensity of use on land that remains.

Finally, the scenarios indicate that the Valley’s urban growth will partly depend on which public policy goals are emphasized. For example, the Prime Farmland Conservation scenario moves a significant amount of development away from existing population centers along the Highway 99 corridor. In contrast, the High-Speed Rail scenario focuses development along that corridor and consumes a large amount of prime farmland near existing cities. Likewise, the Automobile-Oriented Managed Growth scenario locates low-density, automobile-dependent development along the highways, but it consumes less land overall than the High-Speed Rail scenario and encroaches less on prime farmland.

The authors note that local governments, which control most land-use planning and permitting powers, will significantly affect the Valley’s future growth patterns. Although the High-Speed Rail scenario focuses development along that corridor and consumes a large amount of prime farmland near existing cities. PPIC Statewide Surveys over the past five years indicate that the Valley’s residents like their communities today and strongly favor local ballot box decisionmaking. However, they are also increasingly aware of serious growth-related problems at the regional level, and this ambivalence may make it difficult to respond to regional urbanization issues in a timely way. Whether these issues are addressed in time to mitigate growth-related problems will become evident in the coming decades.