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ACRONYMS 

af  acre-foot (feet) 

CALVIN  economic-engineering optimization model for California’s water system 
CVP  Central Valley Project 

DWR California Department of Water Resources 

GDP  gross domestic product 
GSA  groundwater sustainability agency 

IMPLAN Economic Impact Analysis for Planning model 

maf  millions of acre-feet 

SJV  San Joaquin Valley 

SWAP  California Statewide Agricultural Production model 

SWP  State Water Project 

taf  thousands of acre-feet 

TDN  total digestible nutrients 

USDA  United States Department of Agriculture 

WIIN  Water Infrastructure Improvements for the Nation Act 
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Introduction 
Although agriculture in the San Joaquin Valley is facing challenges from growing water scarcity, this sector has a 
history of innovation and adaptation. This appendix describes a modeling analysis to estimate potential economic 
impacts from implementing the Sustainable Groundwater Management Act (SGMA) and other possible future 
reductions in irrigation water supply, including climate-change-related shortages and environmental flow 
restrictions. We look at the impacts for crop production, as well as downstream sectors within the region that rely 
on this output, including dairies and beef cattle, and food and beverage processing. 

Methods and assumptions for estimating impacts from changes in water availability are presented first. Then we 
show the results for crop production, dairy and beef production, and food and beverage products under different 
water availability and demand management scenarios. The last section presents the aggregate estimates for 
region-wide economic impacts of the scenarios considered. 

One important caveat is that this analysis considers the costs, but not the benefits, of ending overdraft. Chronic 
groundwater level decline causes subsidence that damages major regional infrastructure, makes drinking water 
and irrigation wells go dry, increases energy required to pump water, and reduces reserves to cope with future 
droughts.1 Stabilizing groundwater levels should result in lower costs to the region in the long run. As an 
illustration, one study focused on Kings and Tulare Lake basins found that implementing groundwater 
management would incur some initial costs, but lead to net benefits to the agricultural sector over the 88-year 
implementation horizon (MacEwan et al. 2017). The study only accounted for three costs of overdraft: (1) 
increased energy use to pump irrigation water, (2) replacement of dry irrigation wells, and (3) losing groundwater 
as the reserve for future droughts. It did not account for other significant costs of overdraft, such as the impact of 
land subsidence on infrastructure, or the benefits of groundwater management for the valley’s urban and rural 
drinking water supplies and the natural environment. 

Methods 
We estimate the farm-related costs of ending overdraft by looking at a chain of effects. We first explore how 
farmers may change their cropping decisions when they have less groundwater to use, and the consequences for 
crop acreage and output and several measures of the economic value of production (Box C.1). We then look at 
related changes in downstream industries: effects of reduced feed crop output on the valley’s dairy and beef 
industries, and effects of reduced crop and animal products on local food and beverage processing. 

For modeling crop production and water use, we employed the Statewide Agricultural Production Model (SWAP) 
(Howitt et al. 2012).2 As described below, this model includes 14 local regions within the valley, and we present 
results for five broad sub-regions. Since many downstream activities take place in different locations than crop 
production, the analysis of downstream effects is for the eight San Joaquin Valley counties as a group, using a 
2015 model of the regional economy (IMPLAN).3 

 

                                                           
1 See the main report for further discussion of some of these issues, including subsidence impacts to infrastructure and dry wells. 
2 The SWAP model has been applied to various studies with emphasis in California as an ancillary model to CALVIN (Draper et al. 2003). SWAP applications include 
quantification of economic impacts on agriculture from climate change (Medellin-Azuara et al. 2012), drought  (Medellín-Azuara et al. 2015), and salinity (Medellín-
Azuara et al. 2008, Medellín-Azuara et al. 2014, MacEwan et al. 2016). 
3 IMPLAN is an input-output model which provides a snapshot of a region’s economy and spillover effects from economic events from one sector to the rest of the 
economy, which includes other sectors, households and government. In this data source, crop revenues were slightly lower in 2015 ($16.8 billion) than our 2010 
estimates from the SWAP model ($20.8 billion), which rely on USDA County Agricultural Commissioners’ reports. In the analysis of regional economic results, we 
adjust the IMPLAN crop values to match our SWAP model results, by increasing the IMPLAN base values by 24%. 

https://www.ppic.org/water/
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Crop Production 
We used the same version of SWAP developed for recent drought studies (Medellín-Azuara et al. 2015, Howitt et 
al. 2015) but with some updates as detailed below. SWAP calibrates agricultural production to a base set of 
inputs, including land used for crops, water, agricultural supplies, and farm labor; information is broken down by 
agricultural region and crop category. The model assumes that decisions on crop choice, use of production inputs, 
and the intensity of each production factor are made to maximize farm profits—revenues minus costs. Under 
relatively abundant water supply conditions (in this case, conditions in the 2010 water year), SWAP is adjusted to 
match exactly to the base input dataset.4 

                                                           
4 Input data includes land and water use from the California Department of Water Resources for 2010, cost information from the University of California Cooperative 
Extension, and price and crop yield data from California Department of Food and Agriculture County Agricultural Commissioners’ Reports. 

Box 2.2: Measures of Economic Value 

In this report, we use several measures of economic activity to track the value of the valley’s economy 
and assess the impacts of policy change. 

• “Revenue” is the total income from sales of goods and services. The economic value of a 
business or industry is often characterized by its sales because that is the easiest information to 
obtain. Revenue is not an indicator of profitability, however, because it does not consider how 
sales compare with costs. 

• “Profit” is revenues minus costs. It is the income that remains after subtracting all expenses and 
taxes. Farms, like other businesses, generally seek to maximize profits by increasing revenues 
and reducing costs. 

• “Value added” is the contribution of a business or industry to the overall gross domestic product 
(GDP) of a region. It includes profit, compensation to employees, and taxes paid. It excludes the 
cost of goods and services purchased from other vendors or sectors, which have their own value 
added. This is the best measure of a sector’s contribution to the overall economy, because the 
sum of value added from each sector equals total GDP for the region.  

• “Employment” is another useful measure of economic activity. Here we use estimates that 
include both full- and part-time work, including both year-round and seasonal jobs. These are 
the best measures available for agricultural employment.   

Economic sectors are interconnected. Farm revenues usually consist of sales of crop and animal 
products. Food and beverage processing industries would also be affected by reduced farm output. 

When a policy affects farm output, there can be additional effects on sectors that supply  farms—such as 
transportation, fertilizer, irrigation services—as well as spillovers to the broader economy because 
people have less money to spend. These “multiplier” effects are much more difficult to estimate 
accurately. They often overstate the impacts of policy change, because they assume that businesses will 
not adapt to changing economic conditions.  

We focus on the direct economic effects of reducing groundwater use on crops, livestock, and related 
food and beverage processing industries. We do not include other multiplier effects, given the greater 
uncertainties in these measures. 

 

https://www.ppic.org/water/
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As water or land become scarce due to change in hydrologic conditions or policies, SWAP selects input uses that 
maximize the net economic returns to land and water. In our analysis of water supply reductions, we look forward 
to 2040—the year by which most of the valley’s sub-basins need to end long-term overdraft under SGMA—and 
assume that groundwater sustainability agencies will use a gradual, “glide path” approach.5 This way, farmers 
needing to reduce acreage of perennial crops can plan over time, so they do not suffer large investment losses 
from removing mature productive orchards and vineyards. 

The continued expansion of perennial crop acreage since our base case (2010), which lowers farmers’ flexibility 
to reduce water use, could make the costs of adjustment higher than we show.6 In some other respects, however, 
our assumptions about adjustment costs may be pessimistic. To focus on the effects of reducing groundwater use, 
we assume no changes in technology or crop prices. Continued improvements in crop productivity and demand 
for California’s farm products could result in continued growth in farm revenues and profits despite lower overall 
water use. For crops in which California has a special advantage—like almonds and pistachios—reduced output 
could actually raise prices, helping to offset revenue losses. Farmers may also be able to lower the costs of using 
less groundwater by employing some water management techniques not formally included in our analysis, such as 
deficit irrigation (applying a bit less water to plants, which has little effect on yields of some crops) (see Chapter 2 
in main report for a discussion). 

Geographic coverage and base case acreage, water, and revenues  
Figure C1 shows geographic coverage of the model in the San Joaquin Valley. The model includes 14 local 
regions within the valley. Their boundaries are broadly similar (but not identical) to the valley’s 15 groundwater 
sub-basins. SWAP treats each of its regions as a single farm; it assumes that a representative farmer in each 
region uses all farm water—along with other inputs—efficiently at the local level. This approximates conditions 
in which all surface and groundwater used by farms could be freely traded within a sub-basin. 

We report results for the five valley subregions for which we have estimated long-term groundwater overdraft 
(see Technical Appendix A, Table A3 and Figure A20). Within the San Joaquin River hydrologic region, this 
includes the northwest (region 10) and northeast (regions 11, 12, and 13). Within the Tulare Lake hydrologic 
region this includes the southwest (regions 14 and 15), the southeast (regions 16, 17, and 18), and the Kern Basin 
(regions 19, 20, and 21). As in our water balance, we exclude the Delta portions of the San Joaquin Valley from 
our analysis (parts of regions 8 and 9). We assume that they do not experience overdraft, and that they do not 
adjust cropping patterns or water use. However, we do include these areas in our estimates of the valley’s overall 
crop acreage and output. 

  

                                                           
5 Only four of the region’s 15 sub-basins—all located in the San Joaquin River region—are not considered “critically overdrafted” under SGMA, with a deadline to 
begin implementing their groundwater sustainability plan in January 2020 and attain sustainability by 2040 (see Chapter 1 in main report). The four other priority 
basins have an additional two years to adopt and begin implementing their plans. 
6 From 2010–16 harvested acreage of all perennials in the eight valley counties grew by over 500,000 acres (+ 27%); almonds grew by 300,000 acres (National 
Agricultural Statistics Service). 

https://www.ppic.org/water/
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FIGURE C1 
Crop modeling coverage within the San Joaquin Valley and comparison with SGMA sub-basins 

 

 
 

Base case values of land use, applied water and gross revenues for agricultural crops in the San Joaquin Valley in 
2010 are provided in Table C1. About 5.2 million acres of land are cultivated each year in the study region, using 
16.8 million acre-feet (maf) in applied water. Gross revenues are $20.8 billion, of which 81 percent is from trees, 
vines, and vegetables and non-tree fruits. Feed crops (silage corn, alfalfa, and irrigated pasture) occupy 27 percent 
of the total irrigated area and 33 percent of water applied to crops in the valley. These crops serve as an input to 
the large dairy and beef cattle sectors, which represent about one-third of the valley’s total crop and livestock 
revenues. 
 
TABLE C1  
Irrigated acreage, water, and revenues by commodity group in the San Joaquin Valley in 2010 

 

SOURCES: Irrigated crop areas and applied water from the California Department of Water Resources. Revenues are derived from USDA 
County Agricultural Commissioners’ Reports. 
 
 
Table C2 summarizes acreage, water use, and revenues for the five sub-regions. The northern part of the San Joaquin 
Valley accounts for roughly 40 percent of the irrigated area and applied water, and contributes 34 percent of crop 
revenues. The southern part of the valley has more acreage and water use (about 60%), but also a larger share of 
revenues (66%). Among subregions, the southeast generates the highest average revenue per acre and per acre-foot 
of water ($5,230/acre and $1,619/af). The northwest has the lowest average revenues ($2,716/acre and $855/af). 

Crop Commodity Group 
Irrigated Cropland 

(thousands of 
acres) 

Applied Water 
(thousands of acre-feet per 

year) 
Revenues 

(2010 $, millions) 

Alfalfa and pasture  713   3,413  1,264  

Corn  665  1,924  1,000 

Other field and grain  1,187  2,913  1,729 

Trees and vines  2,074   6,772  14,052 

Vegetables and non-tree fruits 559  1,154 2,738  

Total San Joaquin Valley 5,198   16,177 20,784 

https://www.ppic.org/water/
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Overall, the San Joaquin Valley had 40 percent of its total irrigated area in permanent crops (using 42% of all 
irrigation water) in 2010. Permanent crops harden water demand, making it more expensive to reduce water use in 
dry years. Permanent crops use about half of the total applied water in the Kern basin and the eastern part of the 
valley, versus roughly one-third in the southwest, and 15 percent in the northwest. 

TABLE C2 
Irrigated acreage, water, and revenues by sub-region in the San Joaquin Valley in 2010 

Crop Commodity Group 
Land 

(thousands of 
acres) 

Applied Water 
(thousands of acre-feet per year) 

Revenues 
(2010 $, millions) 

Northwest 742 2,357 2,015 

Northeast  1,383 4,023 4,973 

Southwest 1,112 3,177 3,917 

Southeast 1,134 3,662 5,930 

Kern Basin 827 2,958 3,948 

Total San Joaquin Valley  5,198  16,177  20,784 
 
SOURCES: See Table C1.  

 

Dairy and Beef Production 
Among animal products, dairies generated the most revenues ($7.8 billion), followed by beef cattle ($1.9 billion) 
and poultry and egg production ($1 billion). 

Dairies and beef cattle consume feed crops and concentrate.7 Feed crops in the valley considered in the SWAP 
model are alfalfa, silage corn, and irrigated pasture. Most corn in the San Joaquin Valley is for silage; unlike 
alfalfa, silage corn is often produced near the dairy farms as it is costly to haul over long distances. Current 
dietary requirements for silage corn and other wet roughage create some system-wide inflexibility in water and 
land allocation, beyond what is reflected in the market price for corn used in the SWAP model. To allow for this, 
we limit acreage reductions for corn silage in response to water shortages to 33 percent in the Kern basin (where 
the high share of acreage planted to trees and vines limits flexibility), and 20 percent in other areas. We also 
assume that the dairy industry will experience proportional losses when corn silage output goes down. This may 
overstate dairy losses, if improvements in feed technology make it possible for the sector to reduce its reliance on 
corn. We assume that dairies can replace local alfalfa with purchases from elsewhere at no additional cost, which 
could understate losses. Other factors could reduce the profitability and size of California’s dairy industry, 
including water quality management challenges (see Chapter 3 in the main report), and shifts in consumer demand 
toward non-dairy beverages. 

Beef cattle are often divided into three segments: cow-calf, feeder, and feedlot, each with somewhat different feed 
crop requirements. The cow and calf segment relies mainly on irrigated and rainfed pasture in the foothills, along 
with other forages and grains. The feeder segment relies on irrigated pasture in the valley and other forage. The 
feedlot segment relies on concentrate and other forage and grains. During dry years, the higher value of water 
makes irrigated pasture less economical for feeding cattle. Our discussions with producers and other industry 
                                                           
7 Concentrate is any feed that is low in fiber, high in total digestible nutrients (TDN), and supplies the primary nutrients of protein, carbohydrate, and fat. For example, 
grains, cottonseed meal, and wheat bran are concentrates. 

https://www.ppic.org/water/
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experts suggest that the sector adapts by changing diet composition and selling cattle out of the valley. We assume 
that the beef industry will experience some losses when irrigated pasture acreage goes down, with a 4 percent 
reduction in irrigated pasture leading to a 1 percent reduction in the herd.8 

Food and Beverage Processing 
San Joaquin Valley crops and livestock products, including dairy and beef, serve as inputs for the downstream 
food and beverage processing sector. Processing revenues in 2015 were $39 billion, nearly 1.3 times the value of 
agricultural primary production in crops and livestock products (Table C3). However, this overstates the size of 
the processing sector, because these revenues must generally be high enough to cover the cost of purchases of 
crop and livestock products, as well as other inputs—effectively double-counting crop revenues. A better measure 
is value added—the sector’s contribution to regional GDP. It includes profit, compensation to employees, and 
taxes paid. It excludes the cost of goods and services purchased from other vendors or sectors, which have their 
own value added.9 Processing contributed $7.1 billion in regional value added in 2015. 

Reduced output of animal products (notably milk) and some crops (notably almonds, tomatoes, and other fruits) 
can also affect local food and beverage processing. Processing plants may absorb small reductions in raw material 
availability by temporarily reducing output. Large reductions can pose bigger challenges, causing facilities to 
further downsize or relocate. We assume that processing industries will lower output when the supply of local 
agricultural raw materials falls.10 This may overstate the costs of adjustment; some businesses would likely 
replace some local raw materials with (higher cost) products from elsewhere instead of reducing output.  

Region-Wide Economic Effects 
We use the IMPLAN model of economic activity to aggregate and quantify the potential economic costs from 
reducing farm water use in the eight-county San Joaquin Valley. We focus on the direct economic effects of 
reducing water use on crops, livestock, and related food and beverage processing industries, and we report 
changes in revenues, value added, and employment (See Box C.1).11 Table C3 provides base case regional values 
for these sectors. 

  

                                                           
8 This assumption is based on discussions with some producers and other experts about irrigated pasture use by the cow-calf and feeder segments in the southern part of 
the valley. 
9 For a description of value added and other economic indicators used in the analysis, see Box 2.2 in the main report. 
10 The IMPLAN database includes estimates of inter-sectoral purchases from food and beverage processing sectors to crops, dairies, and beef cattle, and also what 
proportion of these inputs is obtained locally and what is imported from other regions in California or other parts of the country. We use changes in crop, dairy, and 
beef sectors’ outputs as a proxy for availability of inputs in food and beverage processing, considering the proportion of these primary sectors’ inputs acquired within 
the eight-county region. 
11 We do include contract labor in crop and animal production. In county economic accounts, this appears as a support service, not direct farm employment, and it is 
counted in IMPLAN as an indirect effect. 

https://www.ppic.org/water/
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TABLE C3 
Base case revenues, value added, and employment in the San Joaquin Valley 

Agriculture-related sectors Revenues 
($ millions) 

Value added 
($ millions) Employment 

Crops 20,784 23,284* 219,792* 

Dairy and beef 9,616 4,667* 41,674* 

Food & beverage industries 38,820 7,139 66,124 

Total 69,219 35,091 327,590 

SOURCES: IMPLAN database for the eight-county region in 2015. Revenues for crops are from SWAP (see note 3 in the text). 

NOTES: Employment includes full- and part-time jobs. * Denotes measures that were adjusted to include agricultural support services 
(mainly contract labor), which are an important input into San Joaquin Valley crop and animal production. This may overstate the total 
sector size. For revenues, we only include direct crop and animal product revenues, because we treat support services as an input that is 
covered by the proceeds of farm sales. 

 

When a policy affects farm output, there can be additional effects on sectors that supply farms—such as 
transportation, fertilizer, and irrigation services—as well as spillovers to the broader economy because people 
have less money to spend. These “multiplier” effects are much more difficult to estimate accurately. They often 
overstate the impacts of policy change, because they assume that businesses will not adapt to changing economic 
conditions. By including both crops and the downstream livestock and food and beverage processing industries, 
we capture the effects of water use reductions on the main sectors that depend on crop production. We do not 
include other multiplier effects, given the greater uncertainties in these measures.  

Water Supply and Demand Management Scenarios 
We model the agricultural economy’s response to adjusting water use under several different water supply and 
demand management scenarios. 

On the water supply side we consider three scenarios: 

 Reducing water use to end historical overdraft; 
 Reducing water use to end historical overdraft and to manage other potential water supply reductions; 
 Scenarios 1 and 2, with some investments in supply augmentation. 

We also considered two demand management scenarios: 

 Farmers are allowed to trade all water locally (the base case); 
 Farmers are allowed to trade surface water valley-wide. 

These scenarios are first evaluated using SWAP. We then use the SWAP results to determine impacts on 
downstream sectors using IMPLAN. 

Reducing Water Use to End Historical Overdraft 
To estimate reductions in water supplies from ending overdraft, we used our water balance estimates detailed in 
Technical Appendix A. Balancing the groundwater budget without new supplies requires reducing consumptive 
water use—the amount evaporated from soils and consumed by plants (see Box 2.1 in main report). For 
agriculture, this requires a somewhat greater reduction in applied water use—and groundwater pumping—than 
the amount of overdraft, because farmers need to apply more irrigation water to their fields than the amount crops 
consume. Ending the historical overdraft of 1.8 maf/year will require a pumping cutback of 2.5 maf/year—or 16 
percent of applied farm water use (Figure C2). This share is higher in the southern valley, which relies more 

https://www.ppic.org/water/
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heavily on overdraft to sustain farming. In the Kern basin and the southeast, over a quarter of supplies are from 
groundwater overdraft. 

FIGURE C2 
Valley-wide irrigation water reductions needed to end overdraft, assuming no new water supplies  

 

 
 
SOURCE: Author estimates using groundwater overdraft estimates in Technical Appendix A and baseline water use and irrigation 
efficiencies from SWAP. 

NOTES: NE is northeast, NW is northwest, SE is southeast, SW is southwest, and KR is Kern basin. We use SWAP estimates of region-
specific irrigation efficiencies to estimate the applied water use reductions required to end overdraft. 

Other Potential Water Supply Reductions 
Other factors could affect future water supplies in the valley, requiring greater adaptations. In particular, the 
changing climate could affect water availability, as could proposed changes in required environmental flows in 
local rivers and the Delta as part of the State Water Board’s update of the Bay-Delta Water Quality Control Plan. 
Water scarcity could also increase if urban areas increase their net water use to accommodate population growth. 

Climate change. Although average precipitation is not expected to change, rising temperatures, shrinking 
snowpack, shorter and more intense wet seasons, more volatile precipitation will all bring water management 
challenges (Mount et al. 2018). In particular, earlier, more intense winter and spring runoff will put pressures on 
surface storage systems (Swain et al. 2018). With less snowpack and greater need for space in surface reservoirs 
for flood protection, increased groundwater recharge will likely be needed to maintain existing levels of water 
storage. Rising temperatures and longer dry seasons may also increase crop water demands (Pathak et al. 2018). 
In addition, rising seas will increase salinity in the Delta, requiring more outflow from upstream reservoirs to keep 
water fresh enough for imports and other uses. 

Increased environmental flows. The State Water Board recently voted to require an increase in instream flows 
for three San Joaquin River tributaries—the Stanislaus, Tuolumne, and Merced Rivers. This will reduce water 

https://www.ppic.org/water/
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available for agricultural and urban users in the northeastern part of the valley. The board is also considering flow 
increases in the Sacramento River system, which could reduce Delta imports.12 

Increased urban water demand. If the valley’s urban sector is able to reduce net outdoor water use by a bit 
more than one-third percent relative to pre-drought levels, the region should be able to accommodate anticipated 
population growth over the next two decades without worsening the valley’s water balance (see Technical 
Appendix B and main report). The same would be true with lower water savings, as long as urban residents and 
businesses are able to help fund more water supply expansion projects than agriculture can afford on its own. 
Otherwise, urban growth could add to water scarcity in the region.   

Economic impacts from a more water-stressed San Joaquin Valley. To provide a rough sense of how 
increased water scarcity would affect the valley’s economy, we apply the same methods used to estimate the costs 
of ending overdraft to look at the costs of filling a larger water deficit. For Delta imports, we assumed an average 
reduction of 375 thousand acre-feet (taf) per year relative to the 1988–2017 average. For the San Joaquin River 
tributaries, we assume an average reduction of 293 taf/year in surface water supplies, consistent with the State 
Water Board’s new flow mandate.13 Relative to filling the historical groundwater deficit, these changes increase 
the water supply gap by roughly one-quarter. 

New Water Supplies 
In Technical Appendix B we analyzed the potential increased water availability and cost of new supplies; and in 
Technical Appendix D we use an economic approach to estimate which supplies will be affordable for farmers. 
We conclude that about a quarter of the historical groundwater deficit might be filled with new supplies—
especially from groundwater recharge projects. Here we consider scenarios where future water supply reductions 
are partially mitigated by these new supplies. We assume that the new supplies will be available in equal 
proportions in the sub-regions with historical overdraft.14 

Demand Management Scenarios: Local vs. Valley-Wide Water Trading 
Our analysis focuses on comparisons of two scenarios for farm water management. In the first case, the model 
assumes that all farm water—along with other inputs—is used efficiently at the local level. This approximates 
conditions in which all surface and groundwater used by farms can be traded freely within a basin. In the second 
case, we also allow farmers to trade surface water across the entire valley. This gives them more flexibility to 
move water to the most profitable uses, and draws water from the northern part of the valley to the southern part, 
where the groundwater deficit is greater. 

These assumptions about flexible water management may be optimistic. There already is significant local and 
region-wide farm water trading within the valley (Hanak and Stryjewski 2012). But several factors could limit its 
expansion. In the local trading case, adjusting to reduced groundwater pumping will be more costly than our 
estimates show if groundwater sustainability agencies (GSAs) do not allow within-basin trading of groundwater—
something that has yet to be developed. And in the valley-wide trading case, trading will be lower—and the costs 

                                                           
12 On the other hand, various recent or pending operational and regulatory changes could increase Delta imports to the valley. This includes the recently approved 
change in the Cooperative Operating Agreement between the CVP and the SWP, which should increase the share of imports remaining in the valley. Federal regulatory 
changes, including implementation of the 2016 Water Infrastructure for Improvements to the Nation (WIIN) Act and the update underway of requirements under the 
federal Endangered Species Act, could increase Delta imports. See Technical Appendix A for details. 
13 We assume the long-term mean annual reduction in supplies with 40 percent of unimpaired flows for February–June for the through to the San Joaquin River near 
Vernalis. The board left open the possibility of approving a negotiated settlement, rather than these flow levels, as part of a comprehensive agreement on flow 
management in the Sacramento–San Joaquin Delta watersheds in 2019 (State Water Resources Control Board 2018). 
14 In practice, the distribution of new supplies will depend on a variety of factors. For instance, farmers in some regions might choose to invest more in new supplies, 
while others who are willing to invest might be prevented by constraints in conveyance that limit the movement of water. 

https://www.ppic.org/water/
https://www.ppic.org/wp-content/uploads/0219ehr-appendix-b.pdf
https://www.ppic.org/wp-content/uploads/0219ehr-appendix-b.pdf
https://www.ppic.org/wp-content/uploads/0219ehr-appendix-b.pdf
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of adjustment higher—if communities in the northern part of the valley restrict surface water trades, or if 
infrastructure is not available to move all the water farmers would like to trade. 

As a very rough indicator of the implications of inflexible water management at the local level, we compare our 
results with local and valley-wide trading with the costs of ending overdraft if valley farmers have no opportunities 
to adapt their water use. The “inflexible local water use” scenario shown below assumes that acreages of all crops 
grown in a local area are reduced in the same proportion. This shows unrealistically high adjustment costs: even if 
there were no local water trading, many individual farmers have diversified crop mixes, and would make 
adjustments on their own farms to reduce acreage of less profitable crops first. However, it is a useful bookend to 
consider the potential economic risks if local surface and groundwater trading is not facilitated within basins.  

Comparison of Water Availability under Different Scenarios 
Tables C4 and C5 summarize the water supply reductions under the suite of scenarios considered, first to end 
historical overdraft (Table C4) and then to end overdraft and manage other potential reductions in water supply 
(Table C5). 

 
TABLE C4 
Reductions in applied water use to end overdraft  

Sub-region 

Local trading only Valley-wide trading Valley-wide trading and new supplies 

Water 
reduction 
(taf/year) 

Reduction (%) 
Water 

reduction 
(taf/year) 

Reduction (%) 
Water  

reduction  
(taf/year) 

Reduction  
(%) 

Northwest 0  0 375  16 375 16 

Northeast 158  4 388  10 310  8 

Southwest 517  16 383  12 286  9 

Southeast 983  27  606 17 294  8 

Kern Basin 866  29 772  26 626  21 

Total San Joaquin Valley  2,524  16  2,524  16 1,893 12 

SOURCES: Authors’ calculations (Technical Appendix A for overdraft, Technical Appendix D for new supplies, and water budgets by source 
from SWAP). 

NOTES: We also ran scenarios with new supplies and local trading only, not shown here. In the scenario with inflexible local water use reported 
below, the water reductions are the same as in the local trading only case. 
 
TABLE C5 
Reductions in applied water use to end overdraft and manage other potential supply reductions  

Sub-region 

Local trading only Valley-wide trading Valley-wide trading and new 
supplies 

Water 
reduction 
(taf/year) 

Reduction 
(%) Water reduction (taf/year) Reduction (%) 

Water 
reduction 
(taf/year) 

Reduction (%) 

Northwest 34  1 470  20 383 16 

Northeast 486  12 469  12 396  10 

Southwest 596  19 579  18 392  12 

Southeast 1,064  29 865  24 615  17 

Kern Basin 1,011  34 807  27 774  26 

Total San Joaquin Valley  3,191  20  3,191  20  2,560  16 

SOURCES: See Table C4. 
NOTES: See text for estimates of potential supply reductions. We also ran scenarios with new supplies and local trading only, not shown here.  

https://www.ppic.org/water/
https://www.ppic.org/wp-content/uploads/0219ehr-appendix-a.pdf
https://www.ppic.org/wp-content/uploads/0219ehr-appendix-d.pdf
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Modeling Results 
This section provides estimates of the effects of ending overdraft on crops, dairy, beef, and food and beverage 
industries. First, we focus on the two demand-management scenarios with no new supplies: local water trading 
only, and valley-wide water trading. Then, we examine the effects of adding new supplies, and we consider the 
impacts of ending overdraft along with other potential supply reductions. Finally, we aggregate the results to 
obtain the regional economic impact of using less water in valley agriculture. 

Adaptation of Crop Production 
Overall, a reduction in 2.5 maf/year in applied water—without allowing for valley-wide surface water trading—
would require fallowing 750,000 acres, or 14 percent of current San Joaquin Valley agricultural acreage. The 
southeast and southwest sections of the valley and Kern County would be most affected, reflecting their large 
groundwater deficits (Figure C3). Fallowed acreage would include almost 300,000 acres of field crops and grain, 
nearly 200,000 acres of alfalfa and pasture, 150,000 acres of trees and vines, 73,000 acres of corn, and 36,000 
acres of vegetables and non-tree crops. Compared to their current acreage, alfalfa and pasture would be reduced 
by 28 percent, other field crops and grains by 25 percent, corn by 11 percent, trees and vines by 7 percent, and 
vegetables and non-tree crops by 6 percent. Farmers will try to adapt by displacing less profitable crops first.15 

FIGURE C3 
Land fallowing would mainly occur in the southern part of the valley if only local water trading is allowed 

 

 
SOURCE: Author estimates. 

NOTE: “Other field crops and grains” include cotton, other grains, and silage other than corn. 

Reduced crop revenue from ending overdraft would be about $2 billion per year—nearly 10 percent of current 
total crop revenue (Figure C4). The southeast would see $836 million in revenue losses (14%). With $786 million 
in losses, Kern County would lose even a larger share of revenues (20%). The southwest also would see 
significant revenue losses—$357 million (9%). The northern part of the valley would only see minor losses. 

                                                           
15 We assume that crop rotation requirements are stable, given the large land area being considered. 

https://www.ppic.org/water/
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Half of the total losses (more than $1 billion) would come from trees and vines being taken out of production. 
Next-highest are other field crops and grains ($381 million in revenue losses) and alfalfa and pasture ($338 
million). Finally, vegetables and non-tree fruits would see a reduction in $165 million in farm revenues, and corn 
revenues would be reduced by $114 million. 

Although this revenue decline is substantial relative to current levels (10%), it is less than the cutbacks in acreage 
(14%) or water use (16%). This reflects the fact that farmers have some flexibility to focus the water on activities 
with the highest returns. 

FIGURE C4 
Revenues would decrease significantly in the southern part of the valley if only local water trading is allowed 

 
SOURCE: Author estimates. 
NOTE: “Other field crops and grains” include cotton, other grains, and silage other than corn.  
 

Valley-wide water trading would significantly lower the costs of ending overdraft 
When surface water markets are allowed across regions, the price of water in the market falls to about $185 per 
acre-foot.16 Water traded would move from north to south—where overdraft is more acute and economic losses 
from ending overdraft are larger. The southeast, southwest, and Kern Basin would be net water buyers. Most of 
this water would be moved using the California Aqueduct, the Delta-Mendota Canal, and the Friant-Kern Canal—
along with the Cross-Valley Canal to facilitate exchanges, although additional investments in east-west 
conveyance capacity might also be warranted. 

With the introduction of valley-wide trading, farmer’s flexibility to adapt increases significantly, resulting in 
lower losses (Figure C5). The acreage fallowed falls slightly, to 725,000 acres, as trading creates more 
opportunities to shift to crops that use less water, keeping more land in production. But trading’s main 
contribution is to lessen the need to fallow relatively profitable crops. Fallowing of trees and vines falls by two-
thirds, and vegetable and non-tree fruits by more than half. Acreage declines in the other crop groups rise by 15 to 
20 percent. The net result is much lower crop revenue losses, which fall from $2 billion to $1.3 billion per year 

                                                           
16 This price represents the marginal value product (increased profits) of one additional unit of water when water is allowed to be transferred across regions in the 
valley. It is calculated by the SWAP model. As shown in Technical Appendix D, the marginal value product of water with only local trading varies considerably for 
different uses—ranging from a high of roughly $900/af for a small share of very profitable fields, to less than $200/af for more than half of all acreage. 

https://www.ppic.org/water/
https://www.ppic.org/wp-content/uploads/0219ehr-appendix-d.pdf
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(6% below current levels). Crop employment losses also fall, from 14,000 jobs (7%) with only local trading to 
9,000 jobs with valley-wide trading (4%), because the more profitable crops also tend to use more labor 
(Medellín-Azuara 2015).  

FIGURE C5 
Valley-wide water trading would shift which crops are fallowed and decrease revenue losses 

 

 
SOURCE: Author estimates.  
NOTES: “Other field crops and grains” include cotton, other grains, and silage other than corn. Total land fallowed falls from 75,000 acres 
with local trading only to 725,000 acres with valley-wide trading. Total crop revenue losses fall from $2 billion to $1.3 billion per year, 
respectively.  
  
As expected, valley-wide trading also significantly shifts the distribution of land fallowing and crop revenue 
losses across the region (Figure C6). With only local trading, losses are concentrated in the southern valley. 
Valley-wide water trading cuts these losses dramatically by shifting some fallowing to the northern valley. This 
also means crop revenues—and farm employment—fall somewhat in the locations that sell water. However, 
farmers only sell if it makes them better off than using the water on their lands. With trading, farm profits increase 
across the entire valley, rising by more than $225 million overall (up 4%). The largest gains are in the northwest, 
where farmers earn roughly $100 million from selling water, and in the Kern basin, where they earn roughly $80 
million by buying water and keeping more cropland in production. 

  

https://www.ppic.org/water/
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FIGURE C6 
Valley-wide water trading would spread out declines in crop acreage and revenues from implementing SGMA 

 

 
 
 
SOURCE: Author estimates. 

NOTES: The figure shows reductions in irrigated crop acreage (panel A) and crop revenues (panel B) with a reduction in groundwater 
pumping of 2.5 maf/year, the level required to eliminate historic overdraft of 1.8 maf/year through demand management. The left-hand 
charts depict results with efficient farm water use at the local level, including local surface and groundwater trading. The right-hand charts 
depict results with efficient farm water use across the entire San Joaquin Valley, including within-region surface water trading. 

Profits would increase with valley-wide water trading and new supplies 
Profits drive water markets. Water transfers work because both buyers and sellers can profit. When profits from 
crops (per unit of water) exceed the cost of water in the market, farmers are willing to buy water. Conversely, 
when the price of water in the market is greater than some farmers’ profits per unit of water, they might be willing 
to sell their water.  

Valley-wide water trading increases profits from crop production by $227 million per year for the entire San 
Joaquin Valley—a 4 percent increase from a local-trading only alternative. Profits either increase or remain stable 

https://www.ppic.org/water/
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across the valley subregions (Figure C7).17 The largest benefits are to the northwest, with roughly $100 million of 
gains mostly from selling water, and the Kern basin, with $83 million in gains from avoiding fallowing of highly 
profitable lands. Profits increase by $17 million in the southeast, and they remain stable in the southwest. The 
total revenues from water sales amount to $104 million per year flowing from the drier south to the wetter north. 

FIGURE C7 
Markets increase profits from crop farming across the valley 

 
SOURCE: Author estimates.  

 

Farm profits would also drive the expansion of new supplies. After making these investments, farmers have to be 
at least as well off economically. Figure C8 shows that new supplies would increase profits from crops by over 
$80 million per year without accounting for the cost of supplies, and by about $20 million per year when 
accounting for these costs. The overall impact on the region’s economy is much more significant, given the 
benefits to downstream activities, as we show below. 

FIGURE C8 
Profits from crop production would increase even after paying for the expansion of water supplies 

 
SOURCE: Author estimates. 

                                                           
17 In the model, farmers are willing to purchase water up to the point where they earn at least as much profits as they would without buying it. 

https://www.ppic.org/water/
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Costs of adaptation would be much higher without flexibility in local farm water use 
Figures C9 and C10 compare the results from our local and valley-wide water trading scenarios with a scenario 
where farmers have no flexibility to adapt crop water use in response to groundwater cutbacks. As noted earlier, 
this is an extreme scenario that overstates likely costs, because even if farmers are unable to trade water, many 
have some flexibility to adapt crop choices on their own lands.  

FIGURE C9 
Tree crop fallowing and revenue losses from ending overdraft would be much higher without local flexibility to adapt farm 
water use 

 
SOURCE: Author estimates. 
NOTE: The “inflexible local water use” scenario assumes proportional acreage reductions in all crop groups at the local level to end 
overdraft. 

Total acreage fallowed is slightly higher (780,000 acres) than in the local water trading case (750,000 acres ), as 
farmers maintain higher acreages of some more water-intensive crops (especially alfalfa and pasture) (Figure 
C9A). Fallowing of trees and vines and vegetables and non-tree fruit acreage more than doubles. The crop 
revenue losses jump significantly, from $2 billion with local trading to $3.5 billion. This results principally from 
the increase in losses from trees and vines (Figure C9B). Losses of corn acreage are slightly higher than in the 
scenario with local trading, because we do not limit acreage reductions to protect supplies of corn silage for 
dairies. The bulk of increased economic losses occur in the valley’s southern subregions (Figure C10). 

https://www.ppic.org/water/
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FIGURE C10 
Revenue losses from ending overdraft would be much higher in the southern valley without local flexibility to manage farm 
water use 

 
SOURCE: Author estimates 

Downstream Effects 

Dairy and Beef Production 
Reductions in production were estimated for dairies and beef cattle based on the estimated reduction in feed crops, 
using assumptions described above. For dairies, the projected declines in silage and corn acreage result in 
substantial declines in output: 10 percent of revenues in the local-trading only case (roughly $805 million dollars 
per year). With valley-wide water trading, this decline increases to 12 percent ($977 million per year) because 
some additional silage corn acreage would be fallowed to move water to higher value crops. Changes in feed 
cattle production were estimated based on the assumed relationship with irrigated pasture on the valley floor. 
With local trading only, there is an expected reduction of 8 percent ($150 million per year) in beef cattle 
production; valley-wide water trading increases this loss to 12 percent ($220 million per year) because irrigated 
pasture acreage declines further. Augmenting water supply does not change these estimates substantially.  

https://www.ppic.org/water/
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Food and Beverage Processing 
Food and beverage processing might also be impacted by crop fallowing and reductions in the dairy and beef 
sectors. We estimate that reduction in crops would cause losses of $2.4 and $1.9 billion/year in the local and 
valley-wide trading scenarios, respectively. Augmenting supplies reduces these revenue losses to $2 billion/year 
with local trading and $1.8 billion with valley-wide trading. 

Overview of Regional Economic Impacts 
Table C6 summarizes the regional economic effects on the crop, dairy and beef, and processing industries of the 
different supply and demand management scenarios examined here. 

Ending historical overdraft 
Ending overdraft without new supplies, and with only local water trading, would reduce agriculture-related 
revenues in the valley by $5.3 billion (8% loss), value added–the best measure of economic activity—by $2.1 
billion (6% loss), and roughly 21,000 full- and part-time jobs (6% loss). Relative to the total regional economy, 
this represents declines of 1.8 percent in revenues, 1.4 percent of value added, and 1.1 percent of employment. 

When valley-wide water trading is allowed, the impacts are substantially reduced: relative to the case with local 
trading only, agriculture-related revenue losses fall by 18 percent, value added losses fall by 28 percent, and 
employment losses fall by 27 percent. These improvements occur despite higher losses (by about 25 %) in the 
downstream beef and dairy sectors from increased fallowing of corn and irrigated pasture. 

New supplies would also help reduce the costs of ending overdraft. With valley-wide trading and new water 
supplies, revenue losses fall by 26 percent (from $5.3 to $3.9 billion per year), value added losses fall by 37 
percent (from $2.1 to $1.3 billion), and employment losses fall by 40 percent (from 21,000 to less than 13,000 
jobs). This highlights the value of a portfolio approach to addressing overdraft—combining cost-effective 
supplies with flexible demand management. Relative to the size of current agricultural economy in the valley, the 
losses from balancing groundwater basins with this portfolio approach represent declines of 6 percent of 
agricultural revenues, and 4 percent of value added and employment. This corresponds to 1.3 percent of total 
regional revenues, 0.9 percent of regional value added, and 0.7 percent of regional employment. 

Potential impacts of additional supply constraints  

Relative to filling the historical groundwater deficit, the additional changes we considered—including reduced 
Delta imports of 375 taf/year and reduced diversions from the San Joaquin River tributaries by 293 taf/year—
would increase the water supply gap by roughly one-quarter. The same adaptation tools—efficient allocation of 
farm water at the local level, valley-wide water trading, and a cost-effective portfolio of new supply 
investments—would help minimize the added costs to the valley economy. With all these strategies, annual 
revenue losses from crops, animal products, and processing would increase from $3.9 to $4.7 billion, value added 
losses from $1.3 to $1.7 billion, and employment losses from 12,700 to 15,900 jobs—roughly 5 percent of the 
valley’s current farm economy, and 1 percent of the overall regional economy (Table C6). 

https://www.ppic.org/water/
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TABLE C6 
Overview of regional economic losses of reducing agricultural water use under different scenarios  

 

Ending historical  
 groundwater overdraft 

Ending groundwater overdraft and 
adapting to other potential water supply 

reductions 

Local 
trading 

Valley-
wide 

trading 

Valley-wide 
trading + 

new 
supplies 

Local 
trading 

Valley-
wide 

trading 

Valley-
wide 

trading + 
new 

supplies 

Water reduction (maf) 2.52 2.52 1.89 3.19 3.19 2.56 

Land fallowing (acres) 748,799 725,803 534,670 952,441 911,951 735,922 

Crop production 

Revenues ($ millions) 2,020 1,307 956 2,552 1,674 1,327 

Value Added ($ millions) 1,369 799 580 1,732 1,028 813 

Employment 14,394 9,014 6,579 18,093 11,774 9,159 

Dairy & beef products 

Revenues ($ millions) 956 1,196 1,162 1,079 1,286 1,200 

Value Added ($ millions) 358 445 432 401 480 447 

Employment 2,965 3,725 3,620 3,362 3,998 3,738 

Processing industries       

Revenues ($ millions) 2,400 1,905 1,784 2,947 2,157 2,140 

Value Added ($ millions) 413 297 273 512 326 330 

Employment 3,908 2,738 2,512 4,913 2,957 3,023 

Cost of new water supplies 0 0 62 0 0 62 

Total economic impacts 

Revenues ($ millions) 5,376 4,408 3,963 6,578 5,118 4,729 

Value Added ($ millions) 2,141 1,542 1,347 2,645 1,835 1,651 

Employment 21,266 15,477 12,711 26,367 18,728 15,920 
 
SOURCE: Author calculations 
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